G98/1-2 Type Test Verification Report

Inverter Model			ATM-3K-TLS, ATM-3K-TL, ATM-4K-TL				
Manufacturer Reference number							
Micro-generator technology				Hybrid inverter			
Manufacturer n	ame		Aton Green Storage SpA				
Registered offic	Registered office address		Via Nuova Circonvallazione, 57/B - 47923 Rimini (RN), Italy				
Operational hea	Operational headquarters address			Via Guido Rossa, 5 – 41057 Spilamberto (MO), Italy			
Tel	+3959783	3939		Fax	+3959784323		
E:mail	a.ferrero	@atonstorage	e.com	Web site	www.atonstorage.com		
			Connection Option				
Maximum rated capacity		3		kW single phase			
		3.68		kW single phase			

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above Type Tested reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98.

	Mr. Ettore Uguzzoni		
Signed	AM	On behalf of	Aton Green Storage SpA

The tests were carried out by personnel with sufficient technical competence at:

- the internal laboratories of the Company that produces the Equipment Under Test on behalf of the Manufacturer and with the Manufacturer's brand: Jiangsu GoodWe Power Supply Technology Co., Ltd. No. 90 Zijin Road, Suzhou New District, Jiangsu, PRC;
- or at external laboratories identified by Jiangsu GoodWe Power Supply Technology Co., Ltd.

All organizations involved in the tests keep copies of all records of the tests and results.

Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator** (e.g. wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG Micro-generator the mechanical drive system may be replaced by a test bench motor.

m case of a 2 from the Benefit and mean arms of other may be represented a fraction mean.						
Test 1 Voltage = 85% of nominal (195.5 V) Frequency = 47.5 Hz Power factor = 1 Period of test 90 minutes	Result Pass					
Test 2 Voltage = 110% of nominal (253 V). Frequency = 51.5 Hz Power factor = 1 Period of test 90 minutes	Result Pass					
Test 3 Voltage = 110% of nominal (253 V). Frequency = 52.0 Hz Power factor = 1 Period of test 15 minutes	Result Pass					

Pass

	Micro-generator tested to BS EN 61000-3-2								
Micro-gene	Micro-generator rating per phase (rpp)			W	NV=MV*3.68/rpp				
	At 45-55% o	f Registered	100% of Regis	tered Capacity					
	Сара	acity							
Harmonic	Measured	Normalized	Measured	Normalized	Limit in BS	Higher limit			
	Value (MV) in	Value (NV) in	Value (MV) in	Value (NV) in	EN61000-3-2	for odd			
	Amps	Amps	Amps	Amps	in Amps	harmonics 21			
						and above			
2nd	0.0404	0.0496	0.0817	0.1002	1.080				
3rd	0.1058	0.1298	0.0814	0.0999	2.300				
4th	0.0204	0.0250	0.0101	0.0124	0.430				
5th	0.0842	0.1033	0.0769	0.0943	1.140				
6th	0.0139	0.0171	0.0237	0.0291	0.300				
7th	0.0573	0.0703	0.0784	0.0962	0.770				
8th	0.0033	0.0041	0.0122	0.0150	0.230				

9th	0.0273	0.0335	0.0567	0.0696	0.400	
10th	0.0095	0.0116	0.0168	0.0206	0.184	
11th	0.0084	0.0104	0.0483	0.0593	0.330	
12th	0.0046	0.0056	0.0137	0.0168	0.153	
13th	0.0070	0.0086	0.0340	0.0417	0.210	
14th	0.0029	0.0036	0.0080	0.0099	0.131	
15th	0.0148	0.0181	0.0178	0.0218	0.150	
16th	0.0024	0.0029	0.0067	0.0082	0.115	
17th	0.0252	0.0309	0.0158	0.0194	0.132	
18th	0.0033	0.0041	0.0044	0.0054	0.102	
19th	0.0291	0.0357	0.0080	0.0099	0.118	
20th	0.0038	0.0047	0.0032	0.0039	0.092	
21th	0.0239	0.0294	0.0022	0.0027	0.107	0.160
22th	0.0042	0.0051	0.0040	0.0049	0.084	
23th	0.0230	0.0283	0.0055	0.0068	0.098	0.147
24th	0.0028	0.0034	0.0020	0.0024	0.077	
25th	0.0237	0.0291	0.0114	0.0140	0.090	0.135
26th	0.0026	0.0032	0.0027	0.0033	0.071	
27th	0.0198	0.0243	0.0110	0.0135	0.083	0.124
28th	0.0023	0.0029	0.0038	0.0047	0.066	
29th	0.0150	0.0184	0.0118	0.0144	0.078	0.117
30th	0.0021	0.0025	0.0021	0.0025	0.061	
31th	0.0130	0.0160	0.0152	0.0187	0.073	0.109
32th	0.0022	0.0027	0.0024	0.0029	0.058	
33th	0.0116	0.0142	0.0158	0.0194	0.068	0.102
34th	0.0030	0.0037	0.0021	0.0026	0.054	
35th	0.0120	0.0148	0.0158	0.0193	0.064	0.096
36th	0.0035	0.0043	0.0028	0.0035	0.051	
37th	0.0129	0.0158	0.0157	0.0193	0.061	0.091
38th	0.0049	0.0060	0.0022	0.0027	0.048	
39th	0.0153	0.0188	0.0167	0.0205	0.058	0.087
40th	0.0062	0.0076	0.0027	0.0033	0.046	

Note:

The higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous).

Pass

	Starting			Stopping			Running	
	d_{max}	d _c	d _(t)	d_{max}	d _c	d _(t)	Pst	Plt 2 hours
Measured Values at test	0	0	0	0	0	0	0.07	0.07
impedance	U	U	O	U	U		0.07	0.07
Normalised to standard	0	0	0	0	0	0	0.0859	0.0859
impedance	U	U	U	O	U	U	0.0659	0.0659
Limits set under BS EN	40/	2 20/	2 20/	40/	2 20/	2 20/	1.0	0.65
61000-3-2		4% 3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65

Applies to three phase and split single phase Micro-generators.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalized values where the power factor of the generation output is 0.98 or above.

Normalized value = Measured value × reference source resistance/measured source resistance at test point × 3.68/rating per phase.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is $0.4~\Omega$.

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24 Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Power quality. DC injecti	Docc			
This test should be carried o	Pass			
Test level power	100%			
Recorded value in Amps	0.02699	0.003028	0.005647	0.007719
As % of rated AC current	0.204%	0.0229%	0.03928%	0.0582%
Limit	0.25%	0.25%	0.25%	0.25%

Power Quality. Power fa				
This test shall be carried out i	l voltage Pass			
-6% and +10%. Voltage to be				
	216.2 V	230 V	253 V	
20% of Registered Capacity	0.9624	0.9557	0.9587	
50% of Registered Capacity	0.9954	0.9556	0.9937	
75% of Registered Capacity	0.9961	0.9972	0.997	
100% of Registered	0.996	0.9967	0.9969	
Capacity	0.996	0.3367	0.9969	
Limit	>0.95	>0.95	>0.95	

[^] Applies to single phase Micro-generators and Micro-generators using two phases on a three phase system.

Protection. Frequency test

These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98 Annex A1 A.1.2.3 (Inverter connected) or Annex A2 A.2.2.3 (Synchronous)

Pass

Function	Setting		Trip test		No trip test	
	Fraguancy	Time delay	Fraguancy	Time delay	Frequency /	Confirm no
	Frequency	Time delay	Frequency	Time delay	time	trip
U/F stage 1	47.5 Hz	20 s	47.49	20.3	47.7Hz /	no trin
O/F Stage 1	47.5 HZ	20 \$	47.49	20.5	30s	no trip
LL/E stage 2	47 Hz	0.5.6	47	0.639	47.2Hz /	no trip
U/F stage 2	47 HZ	0.5 s	47	0.628	19.5s	
		46.8Hz /				no trip
					потпр	
O/F stage 1	52 Hz	0.5 s	52	0.628	51.8Hz /	no trip
O/F Stage 1	32 HZ	0.5 \$	32	0.028	120s	потпр
					52.2Hz /	no trin
				0.45s	no trip	

delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Vo	Pass						
The requirement	The requirement is specified in section 5.3.1, test procedure in Annex A or B 1.3.2						
Function	Set	ting	Trip	test	No	trip test	
	Voltago	Time delay	Voltago	Time delay	Voltage /	Confirm no	
	Voltage	Time delay	Voltage	Time delay	time	trip	
II/V stage 1	184 V	2.5 s	183.18	2.64	188V /	no trin	
U/V stage 1	104 V	2.5 \$	165.16	2.04	5s	no trip	
					180V /	no trin	
					2.45s	no trip	
O/V stage 1	262.2 V	1.0 s	262.1	1.124	258.2V	no trin	
O/V stage 1	202.2 V	1.0 \$	202.1	1.124	5.0s	no trip	
O/V stage 2	273.7 V	0.5 s	272 72	0.64	269.7V	no trin	
O/V Stage 2	2/3./ V	0.5 \$	273.72	0.64	0.95s	no trip	
					277.7V	no trin	
					0.45s	no trip	

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Loss of Mains test

For PV Inverters shall be tested in accordance with BS EN 62116. Other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power.

For **Inverters** tested to BS EN 62116 the following sub set of tests should be recorded in the following table.

Test Power	33%	66%	100%	33%	66%	100%
Balancing load on islanded network	-5% Q Test 22	-5% Q Test 12	-5% P Test 5	+5% Q Test 31	+5% Q Test 21	+5% P Test 10
Trip time. Limit is 0.5s	0.120s	0.093s	0.124s	0.111s	0.121s	0.091s

For other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power. the following sub set of tests should be recorded in the following table

For Multi phase Micro-generators confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	Registered	Registered	Registered	Registered	Registered	Registered
network	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity
Trip time. Ph1	NA	NA	NA	NA	NA	NA
Trip time. Ph2	NA	NA	NA	NA	NA	NA
Trip time. Ph3	NA	NA	NA	NA	NA	NA

Note for technologies which have a substantial shut down time this can be added to the 0.5 s in establishing that the trip occurred in less than 0.5 s. Maximum shut down time could therefore be up to 1.0 s for these technologies

Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).

Pass

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49Hz	+50 degrees	no trip
Negative Vector Shift	50.5Hz	- 50 degrees	no trip

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3,					
test procedure in Annex A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).					
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip		
49.0 Hz to 51.0 Hz	+0.95Hz/sec	2.1 s	no trip		
51.0 Hz to 49.0 Hz	-0.95Hz/sec	2.1 s	no trip		

Limited Frequency Sensitive				
accordance with EN 50438 Ar	Pass			
carried out using the specific t				
Test sequence at Registered	Measured Active	Frequency	Primary Power	Active Power
Capacity >80%	Power Output		Source	Gradient
Step a) 50.00 Hz ±0.01 Hz	3082	50	3194	
Step b) 50.45 Hz ±0.05 Hz	3058	50.45	3171	15.57%
Step c) 50.70 Hz ±0.10 Hz	2903	50.7	2994	19.37%
Step d) 51.15 Hz ±0.05 Hz	2620	51.15	2701	19.99%
Step e) 50.70 Hz ±0.10 Hz	2902	50.7	2993	19.47%
Step f) 50.45 Hz ±0.05 Hz	3059	50.45	3173	14.93%
Step g) 50.00 Hz ±0.01 Hz	3083	50	3193	
Test sequence at Registered	Measured Active	Frequency	Primary Power	Active Power
Capacity	Power Output		Source	Gradient
40% - 60%				
Step a) 50.00 Hz ±0.01 Hz	1503	50	1553	
Step b) 50.45 Hz ±0.05 Hz	1474	50.45	1537	19.33%
Step c) 50.70 Hz ±0.10 Hz	1310	50.7	1459	21.44%
Step d) 51.15 Hz ±0.05 Hz	1041	50.15	1301	20.53%
Step e) 50.70 Hz ±0.10 Hz	1305	50.7	1452	22.00%
Step f) 50.45 Hz ±0.05 Hz	1474	50.45	1537	19.33%
Step g) 50.00 Hz ±0.01 Hz	1503	50	1551	

Power output with falling frequency test: This test should be carried out in accordance with EN					
50438 Annex D.3.2 active power feed-in at under-frequency.					
Test sequence	Measured Active Power	Frequency	Primary p	ower source	
	Output				
Test a) 50 Hz ± 0.01 Hz	3012	50	3	3303	
Test b) Point between 49.5	3004	49.55	3	309	
Hz and 49.6 Hz					
Test c) Point between 47.5	307	47.55	3	3301	
Hz and 47.6 Hz					
NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes					

Protection. Re-connection time						
Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and						
frequency to within the stage 1 settings of Table 2.						
Time delay setting						
Measured delay time(s)	At 258.2V	At 204.1V	At 47.6Hz	At 51.9Hz		
	48s	48s	48s	48s		
Confirmation that the	At 266.2V	At 196.1V	At 47.4Hz	At 52.1Hz		
SSEG does not re-connect	no reconnection	no reconnection	no reconnection	no reconnection		

Fault level contribution: These tests s	REC G98	Dana		
Annex A1 A.1.3.5 (Inverter connected)		Pass		
	For a Inverter SSEG			
Time	Volto		Amps	
after fault	Volts			
20ms	-9.837		3.0264	
100ms		-6.3002		
250ms	-6.621	-2.1193		
500ms	-1.796	0.132		
Time to trip	0.0664	In seconds		
Logic Interface.			Yes	
Self-Monitoring solid state switching:	o EREC			
G98 Annex A1 A.1.3.6 (Inverter connec				
It has been verified that in the even	iling to	N/A		
disconnect the Micro-generator, the vo	device			
is reduced to a value below 50 V within				

Additional comments

ATM-3K-TLS, ATM-3K-TL is similar to ATM-4K-TL in circuit and construction except for rating. The test result can refer to ATM-4K-TL

